Contrast-enhanced micro-computed tomography of fatigue microdamage accumulation in human cortical bone.
نویسندگان
چکیده
Conventional methods used to image and quantify microdamage accumulation in bone are limited to histological sections, which are inherently invasive, destructive, two-dimensional, and tedious. These limitations inhibit investigation of microdamage accumulation with respect to volumetric spatial variation in mechanical loading, bone mineral density, and microarchitecture. Therefore, the objective of this study was to investigate non-destructive, three-dimensional (3-D) detection of microdamage accumulation in human cortical bone using contrast-enhanced micro-computed tomography (micro-CT), and to validate micro-CT measurements against conventional histological methods. Unloaded controls and specimens loaded in cyclic uniaxial tension to a 5% and 10% reduction in secant modulus were labeled with a precipitated BaSO₄ stain for micro-CT and basic fuchsin for histomorphometry. Linear microcracks were similarly labeled by BaSO₄ and basic fuchsin as shown by backscattered electron microscopy and light microscopy, respectively. The higher X-ray attenuation of BaSO₄ relative to the bone extracellular matrix provided enhanced contrast for the detection of damage that was otherwise not able to be detected by micro-CT prior to staining. Therefore, contrast-enhanced micro-CT was able to nondestructively detect the presence, 3-D spatial location, and accumulation of fatigue microdamage in human cortical bone specimens in vitro. Microdamage accumulation was quantified on segmented micro-CT reconstructions as the ratio of BaSO₄ stain volume (SV) to total bone volume (BV). The amount of microdamage measured by both micro-CT (SV/BV) and histomorphometry (Cr.N, Cr.Dn, Cr.S.Dn) progressively increased from unloaded controls to specimens loaded to a 5% and 10% reduction in secant modulus (p < 0.001). Group means for micro-CT measurements of damage accumulation were strongly correlated to those using histomorphometry (p < 0.05), validating the new methods. Limitations of the new methods in the present study included that the precipitated BaSO₄ stain was non-specific and non-biocompatible, and that micro-CT measurements exhibited greater variability compared to conventional histology. Nonetheless, contrast-enhanced micro-CT enabled non-destructive imaging and 3-D spatial information, which are not possible using conventional histological methods.
منابع مشابه
Detection of Fatigue Microdamage in Human Cortical Bone Using Micro-Computed Tomography
INTRODUCTION: Conventional techniques used to image microdamage in cortical bone require the preparation of many histologic sections which is inherently invasive, destructive, two-dimensional, and tedious [1]. These limitations inhibit evaluation of the effects of microdamage on whole bone strength and prohibit detection of microdamage in vivo. Therefore, micro-computed tomography (micro-CT) ha...
متن کاملMicro-computed tomography of fatigue microdamage in cortical bone using a barium sulfate contrast agent.
Accumulation of microdamage during fatigue can lead to increased fracture susceptibility in bone. Current techniques for imaging microdamage in bone are inherently destructive and two-dimensional. Therefore, the objective of this study was to image the accumulation of fatigue microdamage in cortical bone using micro-computed tomography (micro-CT) with a barium sulfate (BaSO(4)) contrast agent. ...
متن کاملDetection of fatigue microdamage in whole rat femora using contrast-enhanced micro-computed tomography.
Microdamage in bone tissue is typically studied using destructive, two-dimensional histological techniques. Contrast-enhanced micro-computed tomography (micro-CT) was recently demonstrated to enable non-destructive, three-dimensional (3-D) detection of microdamage in machined cortical and trabecular bone specimens in vitro. However, the accumulation of microdamage in whole bones is influenced b...
متن کاملContrast Agents for Micro-Computed Tomography of Microdamage in Bone
Accumulation of microdamage during fatigue can lead to increased fracture susceptibilityin bone. Current techniques for imaging microdamage in bone are inherently destructiveand two-dimensional. Therefore, the objective of this study was to image the accumulationof fatigue microdamage in cortical bone using micro-computed tomography (micro-CT)with a barium sulfate (BaSO4) contra...
متن کاملFatigue microcracks that initiate fracture are located near elevated intracortical porosity but not elevated mineralization.
In vivo microcracks in cortical bone are typically observed within more highly mineralized interstitial tissue, but postmortem investigations are inherently limited to cracks that did not lead to fracture which may be misleading with respect to understanding fracture mechanisms. We hypothesized that the one fatigue microcrack which initiates fracture is located spatially adjacent to elevated in...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Bone
دوره 48 3 شماره
صفحات -
تاریخ انتشار 2011